United States Patent

US009465955B1

(12) (10) Patent No.: US 9,465,955 B1
Tidd 45) Date of Patent: Oct. 11, 2016
(54) SYSTEM FOR AND METHODS OF 5,831,609 A 11/1998 London et al.
CONTROLLING USER ACCESS TO 5898419 A 41999 Liu
APPLICATIONS AND/OR PROGRAMS OF A somans & 1a1o09 Simonofl et al.
COMPUTER 6393569 Bl 52002 Orenshteyn
6,710,790 Bl 3/2004 Fagioli
(71) Applicant: hopTo Inc., Campbell, CA (US) 7,051,288 B2 5/2006 Bennett et al.
7,058,461 B2 6/2006 Malizia
(72) Inventor: William Tidd, Alton Bay, NH (US) 7,188,181 Bl 3/2007 Squier et al.
(Continued)
(73) Assignee: HOPTO INC., Campbell, CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 WO WO 2010/135127 11/2010
U.S.C. 154(b) by 0 days.
OTHER PUBLICATIONS
(21) Appl. No.: 14/332,660
Park et al.; “Role-based access control on the web”; ACM trans-
(22) Filed: Jul. 16, 2014 actions on information and system security; vol. 4, No. 1, Feb. 2001.
p. 37-71, 35 pages.
Related U.S. Application Data (Continued)
(63) Continuation of application No. 13/367,228, filed on Primary Examiner — Jason Lee
Feb. 6, 2012, now Pat. No. 8,863,232. (74) Attorney, Agent, or Firm — Polsinelli LLP
(60) Provisional application No. 61/439,765, filed on Feb.
4,2011. 57 ABSTRACT
A system includes an application access manager driver and
(51) Int. CL an operating system (OS) kernel module in a kernel-mode
GOGF 21/00 (2013.01) address space of an OS. The system also includes applica-
GOGF 21/62 (2013.01) tion modules, a public application whitelist, a public appli-
(52) US. CL cation whitelist manager, a user/group application whitelist,
CPC o GO6F 21/6245 (2013.01) and a user/group application whitelist manager in a user-
(58) Field of Classification Search mode address space of the OS. A method includes receiving
USPC oottt s 726/2 a request to launch an application, calling a “create process”
See application file for complete search history. function in the OS kernel module, calling a pre-registered
“create process” callback function to the application access
(56) References Cited manager driver, and determining whether the application is

U.S. PATENT DOCUMENTS

allowed to execute based on whether the application access
manager driver identifies the application as an allowable
process in either public application whitelist or user/group

5,268,962 A * 12/1993 Abadi ... HO04L 63/1441 N oo
380/284 application whitelist.
5,809,230 A * 9/1998 Pereira GO6F 21/6218
726/35 17 Claims, 6 Drawing Sheets
Computer 100
% ;Users/Groups!sO
08 119
Public User/group
application application User-mode address
whitelist 158 whitelist 170 space 150
e IRE2
manager 162 | | manager 174

address space 120

Kernel-mode

‘Application access manager driver 128

O o5 am
User data Global modle 126
132 data 136

(D Register “create process”

® Foceive “costo procoss”

calloack hook into kernel module

callback from kernel madule

US 9,465,955 B1

Page 2
(56) References Cited 2007/0280459 Al 12/2007 Yee et al.
2007/0283446 Al 12/2007 Yami et al.
U.S. PATENT DOCUMENTS 2008/0016504 Al 1/2008 Cheng et al.
2008/0071860 Al 3/2008 Dal Canto et al.
7.216.298 Bl 5/2007 Ballard et al. 2008/0091550 Al 4/2008 Zacarias et al.
7922158 B2 5/2007 Wexelblat 2008/0137131 Al 6/2008 Cavill et al.
7949175 B1 7/2007 Donaldson 2008/0167005 Al 7/2008 Gilzean et al.
7353252 Bl 4/2008 Yang et al. 2008/0209537 Al 8/2008 Wong et al.
7461.134 B2 12/2008 Ambrose 2008/0270516 Al 10/2008 Ragnet et al.
7526792 B2 4/2009 Ross 2009/0013045 Al 1/2009 Maes et al.
7,587,459 B2 9/2009 Wewalaarachchi et al. 2009/0013273 Al 1/2009 Fuchs
7,647,411 Bl 1/2010 Schiavone et al. 2009/0021387 Al 1/2009 Hosono
7,716,302 B2 5/2010 Maze et al. 2009/0024626 Al 1/2009 Takei
7.739.693 B2 6/2010 Bernhard et al. 2009/0027334 Al 1/2009 Foulk et al.
7.920.528 B2 4/2011 Karaoguz et al. 2009/0037976 Al 2/2009 Teo et al.
8,073,855 B2 12/2011 Nagoya 2009/0070404 Al 3/2009 Mazzaferri
8,117,554 Bl 2/2012 Grechishkin et al. 2009/0083852 Al 3/2009 Kuo et al.
8,219,807 B1 7/2012 Danoyan et al. 2009/0132509 Al 52009 Nagoya
8,281,410 B1* 10/2012 Sobel et al.c.cccooo...nn. 726/27 2009/0144362 Al 6/2009 Richmond et al.
8,427,445 B2 4/2013 Kennedy 2009/0177791 Al 7/2009 Edelstein et al.
8.438.473 B2 5/2013 Mak et al. 2009/0180777 Al 7/2009 Bernard et al.
8527978 Bl 9/2013 Sallam 2009/0182501 A1 7/2009 Fyke
8.688.734 Bl 4/2014 Tidd 2009/0187654 Al 7/2009 Raja et al.
8,694,507 B2 4/2014 Meyerzon et al. 2009/0187857 Al 7/2009 Tanaka
8.713.658 Bl 4/2014 Tidd 2009/0204711 Al 8/2009 Binyamin
8738814 Bl 5/2014 Cronin 2009/0231285 Al 9/2009 Duncan
8739074 B2 52014 Kinoshita 2009/0235347 Al 9/2009 Syed et al.
8745505 B2 6/2014 Tam 2009/0245176 Al 10/2009 Balasubramanian et al.
8769011 B2 7/2014 Baird et al. 2009/0300129 Al 12/2009 Golub
8799777 BL 82014 Lee 2010/0005142 Al 1/2010 Xiao et al.
8.856.907 Bl 10/2014 Tidd 2010/0020025 A1 1/2010 Lemort et al.
8’863’232 Bl 10/2014 Tidd 2010/0058431 Al 3/2010 McCorkendale et al.
8.887.132 Bl 11/2014 Hunter 2010/0088367 Al 4/2010 Brown et al.
8.950.007 Bl 2/2015 Teal et al. 2010/0138780 Al 6/2010 Marano et al.
8.054.887 Bl 2/2015 Tseng 2010/0146504 Al 6/2010 Tang et al.
9.165.160 B1 10/2015 Tidd 2010/0153581 Al 6/2010 Nagarajan et al.
0.203.791 Bl 122015 Olomskiy 2010/0162163 Al 6/2010 Wang et al.
9.239.812 Bl 1/2016 Berlin 2010/0214302 Al 8/2010 Melcher et al.
0308001 Bl 7/2016 Tidd 2010/0228963 A1 9/2010 Kassab et al.
0401909 B> 72016 Tidd 2010/0268762 Al 10/2010 Pahlavan et al.
2001/0023438 Al 9/2001 Ishida 2010/0269039 A1 10/2010 Pahlavan et al.
2002/0091697 Al 7/2002 Huang et al. 2010/0269152 Al 10/2010 Pahlavan et al.
2002/0130900 Al 9/2002 Davis 2010/0293499 Al 11/2010 Young et al.
2002/0158921 Al 10/2002 Silverstein 2010/0295817 Al 11/2010 Nicholson et al.
2003/0058277 Al 3/2003 Bowman-Amuah 2010/0321406 Al 12/2010 Iwase
2003/0084112 A1 5/2003 Curray et al. 2010/0325716 Al 12/2010 Hong et al.
2003/0163448 Al 82003 Kilemba et al. 2011/0010668 Al 1/2011 Feldstein
2004/0080771 Al 4/2004 Mihira et al. 2011/0029772 A1~ 2/2011 Fanton et al.
2004/0163046 Al 82004 Chu et al. 2011/0099297 Al 4/2011 Hayton
2004/0190049 Al 9/2004 Ttoh 2011/0113427 Al 5/2011 Dotanccccoeeenne. GOG6F 9/455
2005/0044483 Al 2/2005 Maze et al.] 718/1
2005/0093868 Al 5/2005 Hinckley 2011/0137974 Al 6/2011 Momchilov
2005/0102636 Al 5/2005 McKeon et al. 2011/0138295 Al 6/2011 Momchilov et al.
2005/0114760 A1 5/2005 Arregui et al. 2011/0138314 Al 6/2011 Mir et al.
2005/0138569 Al 6/2005 Baxter et al. 2011/0141031 Al 6/2011 McCullough et al.
2005/0149857 Al 7/2005 Negishi et al. 2011/0145728 Al 6/2011 Bishop
2005/0177730 Al 8/2005 Davenport et al. 2011/0154212 Al 6/2011 Gharpure et al.
2005/0198299 Al 9/2005 Beck et al. 2011/0191407 Al 82011 Fu et al.
2005/0210418 Al 9/2005 Marvit et al. 2011/0197051 Al 8/2011 Mullin et al.
2005/0226192 Al 10/2005 Red et al. 2011/0209064 Al 8/2011 Jorgensen et al.
2006/0005187 Al 1/2006 Neil 2011/0258271 A1 10/2011 Gaquin
2006/0010433 Al 1/2006 Neil 2011/0264463 A1 10/2011 Kincaid
2006/0039012 Al 2/2006 Ferlitsch 2011/0270936 A1 11/2011 Guthrie et al.
2006/0047780 Al 3/2006 Patnude 2011/0277027 A1 11/2011 Hayton et al.
2006/0059253 Al 3/2006 Goodman et al. 2011/0279829 Al 11/2011 Chang et al.
2006/0075224 Al 4/2006 Tao 2011/0302495 A1 12/2011 Pinto et al.
2006/0150256 Al 7/2006 Fanton et al. 2011/0307614 A1 12/2011 Bernardi et al.
2006/0161846 Al 7/2006 Van Leeuwen 2011/0314093 Al 12/2011 Sheu et al.
2006/0230105 Al 10/2006 Shappir et al. 2012/0011472 A1 1/2012 Ohkubo
2006/0250578 Al 11/2006 Pohl et al. 2012/0011578 Al 1/2012 Hinton et al.
2006/0253558 Al 11/2006 Acree et al. 2012/0023593 Al 1/2012 Puder et al.
2007/0061264 Al 3/2007 Yeung et al. 2012/0030584 Al 2/2012 Bian
2007/0078994 Al 4/2007 Wilson et al. 2012/0054671 Al 3/2012 Thompson et al.
2007/0089111 Al 4/2007 Robinson et al. 2012/0066607 Al 3/2012 Song et al.
2007/0101297 Al 5/2007 Forstall et al. 2012/0066695 Al 3/2012 Berezansky et al.
2007/0113187 Al 5/2007 McMullen et al. 2012/0066762 Al 3/2012 Todorovic
2007/0121584 Al 5/2007 Qiu et al. 2012/0084713 Al 4/2012 Desai et al.
2007/0174410 Al 7/2007 Croft et al. 2012/0092277 Al 4/2012 Momchilov
2007/0198950 Al 82007 Dodge 2012/0096389 Al 4/2012 Flam et al.

US 9,465,955 B1
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0151374 Al 6/2012 Liu
2012/0159482 Al 6/2012 Jeong et al.
2012/0159570 Al1* 6/2012 Reierson et al. 726/2

2012/0173673 Al
2012/0173732 Al
2012/0185527 Al
2012/0185767 Al
2012/0226742 Al
2012/0240054 Al
2012/0246645 Al
2012/0297471 Al
2012/0304061 Al
2012/0304168 Al
2012/0311070 Al
2012/0324365 Al
2013/0024779 Al
2013/0024812 Al
2013/0060842 Al
2013/0097550 Al
2013/0110828 Al
2013/0132856 Al
2013/0138810 Al
2013/0198600 Al
2013/0219338 Al
2013/0254675 Al
2013/0254761 Al
2013/0275973 Al
2013/0290856 Al
2013/0305344 Al
2013/0311990 Al
2013/0318582 Al
2013/0326583 Al
2014/0012574 Al
2014/0026057 Al
2014/0032644 Al
2014/0074881 Al
2014/0143846 Al
2014/0143847 Al
2014/0165176 Al
2014/0188977 Al
2014/0325054 Al
2015/0074199 Al

7/2012 Dietrich et al.
7/2012 Sullivan
7/2012 Jaudon et al.
7/2012 Schlegel
9/2012 Momchilov et al.
9/2012 Webber
9/2012 Tikura et al.
11/2012 Smithson
11/2012 Hoover
11/2012 Raj Seeniraj et al.
12/2012 BianRosa et al.
12/2012 Momchilov et al.
1/2013 Bechtel et al.
1/2013 Reeves et al.
3/2013 Grossman et al.
4/2013 Grossman et al.
5/2013 Meyerzon et al.
5/2013 Binyamin et al.
5/2013 Binyamin et al.
8/2013 Lockhart et al.
8/2013 VanBlon
9/2013 de Andrade et al.
9/2013 Reddy et al.
10/2013 Greenfield et al.
10/2013 Beveridge et al.
11/2013 Alicherry et al.
11/2013 Tang et al.
11/2013 McCann et al.
12/2013 Freihold et al.
1/2014 Pasupalak et al.
1/2014 Kimpton et al.
1/2014 Saxena et al.
3/2014 Meyerzon et al.
5/2014 Tidd
5/2014 Tidd
6/2014 Ow
7/2014 Song et al.
10/2014 Agrawal et al.
3/2015 Lv

OTHER PUBLICATIONS

U.S. Appl. No. 13/367,228 Final Office Action mailed Jul. 23, 2013.
U.S. Appl. No. 13/367,228 Office Action mailed Jan. 30, 2013.
U.S. Appl. No. 13/367,239 Final Office Action mailed Nov. 14,
2013.

U.S. Appl. No. 13/367,239 Office Action mailed Jun. 24, 2013.
U.S. Appl. No. 13/481,742 Final Office Action mailed Sep. 4, 2013.
U.S. Appl. No. 13/481,742 Office Action mailed May 9, 2013.
U.S. Appl. No. 13/481,746 Final Office Action mailed Mar. 26,
2014.

U.S. Appl. No. 13/481,746 Office Action mailed Dec. 19, 2013.
U.S. Appl. No. 13/481,751 Office Action mailed Dec. 30, 2013.
U.S. Appl. No. 13/481,752 Final Office Action mailed Sep. 4, 2013.
U.S. Appl. No. 13/481,752 Office Action mailed May 9, 2013.
U.S. Appl. No. 13/753,474 Office Action mailed Jun. 11, 2014.
U.S. Appl. No. 13/753,474 Final Office Action mailed Mar. 6, 2014.
U.S. Appl. No. 13/753,474 Office Action mailed Nov. 21, 2013.
U.S. Appl. No. 13/570,106 Office Action mailed Feb. 27, 2014.
U.S. Appl. No. 13/570,108 Office Action mailed May 13, 2014.
U.S. Appl. No. 13/570,115 Final Office Action mailed Jun. 30, 2014.
U.S. Appl. No. 13/570,115 Office Action mailed Feb. 11, 2014.
U.S. Appl. No. 13/481,743 Office Action mailed Jan. 14, 2015.
U.S. Appl. No. 13/481,751 Final Office Action mailed Sep. 3, 2014.
U.S. Appl. No. 13/753,474 Final Office Action mailed Oct. 6, 2014.

U.S. Appl. No. 13/570,106 Final Office Action mailed Sep. 15,
2014.

U.S. Appl. No. 13/570,108 Office Action mailed Oct. 10, 2014.
U.S. Appl. No. 13/668,097 Office Action mailed Sep. 12, 2014.
U.S. Appl. No. 13/668,100 Office Action mailed Sep. 10, 2014.
U.S. Appl. No. 13/753,475 Office Action mailed Apr. 24, 2015.
U.S. Appl. No. 13/753,476 Office Action mailed Apr. 22, 2015.
U.S. Appl. No. 13/570,103 Office Action mailed Apr. 24, 2015.
U.S. Appl. No. 13/570,115 Office Action mailed Jun. 19, 2015.
U.S. Appl. No. 13/668,097 Final Office Action mailed Jun. 16, 2015.
U.S. Appl. No. 13/668,100 Final Office Action mailed Jun. 17, 2015.
U.S. Appl. No. 13/481,745 Office Action mailed Feb. 10, 2015.
U.S. Appl. No. 13/753,474 Office Action mailed Mar. 27, 2015.
U.S. Appl. No. 13/570,108 Office Action mailed Apr. 1, 2015.
U.S. Appl. No. 13/570,110 Office Action mailed Mar. 30, 2015.
U.S. Appl. No. 13/570,111 Office Action mailed Apr. 1, 2015.
U.S. Appl. No. 13/570,113 Office Action mailed Apr. 3, 2015.
U.S. Appl. No. 13/481,746 Office Action mailed Sep. 15, 2015.
U.S. Appl. No. 13/481,751 Office Action mailed Sep. 17, 2015.
U.S. Appl. No. 13/753,477 Office Action mailed Jul. 29, 2015.
U.S. Appl. No. 13/753,478 Office Action mailed Aug. 19, 2015.
U.S. Appl. No. 13/753,479 Office Action mailed Aug. 12, 2015.
U.S. Appl. No. 13/668,105 Office Action mailed Jul. 8, 2015.
U.S. Appl. No. 14/150,680 Office Action mailed Mar. 29, 2016.
U.S. Appl. No. 14/150,684 Office Action mailed Apr. 12, 2016.
U.S. Appl. No. 14/151,222 Office Action mailed Mar. 30, 2016.
U.S. Appl. No. 14/152,306 Office Action mailed Mar. 30, 2016.
U.S. Appl. No. 13/753,475 Final Office Action mailed Mar. 3, 2016.
U.S. Appl. No. 13/753,476 Final Office Action mailed Mar. 2, 2015.
U.S. Appl. No. 13/753,478 Final Office Action mailed Mar. 29,
2016.

U.S. Appl. No. 13/753,479 Final Office Action mailed Apr. 18,
2016.

U.S. Appl. No. 13/668,097 Office Action mailed Feb. 25, 2016.
U.S. Appl. No. 13/668,100 Office Action mailed Feb. 26, 2016.
Damien, “How to Switch to Desktop Mode for Your Browser in
Honeycomb Tablet [Android].” Oct. 4, 2011, http://www.
maketecheasier.com/switch-to-desktop-mode-for-honeycomb-tab-
let-android/.

Kessler, How to use Safari’s new ‘Reader’, Jun. 9, 2010, http://
www.cnet.com/news/how-to-use-safaris-new-reader/.

Mobotap, “Add-on Digest: Desktop Toggle,” May 16, 2012, http://
dolphin.com/add-on-digest-desktop-toggle/.

Sieber, “5 Must Have Add-Ons for the Dolphin Browser on Your
Android Honeycomb Tablet,” Oct. 25, 2011, http://www.
makeuseof.com/tag/5-addons-dolphin-browser-android-honey-
comb-tablet/.

Xue, “Windows 8 How To: 1. Switch Between Metro Ul and
Desktop Mode,” Mar. 7, 2012, http://blogs.msdn.com/b/zxue/ar-
chive/2012/03/07win8-howto-1-switch-between-metro-ui-and-
desktop.aspx.

U.S. Appl. No. 14/152,303 Office Action mailed Nov. 13, 2015.
U.S. Appl. No. 13/481,745 Final Office Action mailed Nov. 19,
2015.

U.S. Appl. No. 14/445,319 Office Action mailed Dec. 14, 2015.
U.S. Appl. No. 13/570,103 Final Office Action mailed Dec. 31,
2015.

U.S. Appl. No. 13/570,110 Final Office Action mailed Dec. 21,
2015.

U.S. Appl. No. 13/570,111 Final Office Action mailed Dec. 18,
2015.

U.S. Appl. No. 13/570,113 Final Office Action mailed Dec. 18,
2015.

U.S. Appl. No. 13/481,743 Office Action mailed Oct. 23, 2015.
U.S. Appl. No. 13/570,108 Final Office Action mailed Oct. 29,
2015.

U.S. Appl. No. 13/570,115 Final Office Action mailed Jun. 27, 2016.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 6 US 9,465,955 B1
Computer 100
\ Users/Groups 190
OSs 110
Public User/group
application application User-mode address
whitelist 158 whitelist 170 space 150
A\ 4 A\ 4
Public User/group AppI|Cat|On
application application modules 154
whitelist whitelist
manager 162 manager 174
Kernel-mode
address space 120
A 4 A 4
Application access manager driver 128 @ y
| OS kernel
User data Global | module 124
132 data 136 —

@ Register “create process” callback hook into kernel module

@ Receive “create process” callback from kernel module

FIG. 1

U.S. Patent Oct. 11, 2016 Sheet 2 of 6 US 9,465,955 B1

Method 200

\\q

Administrator specifies a whitelist of | 210
applications that are required for —
session operation

A 4

220
Administrator publishes applications |

that all users are allowed to access

\ 4

230
Administrator saves public application | _~

whitelist

FIG. 2

U.S. Patent Oct. 11, 2016 Sheet 3 of 6 US 9,465,955 B1

Method 300

\

Administrator specifies a whitelist of 310
applications to which a specific user or —
group is granted access

A 4

320
Administrator publishes applicationsto | _~

specific users or groups

4

- 330
Administrator saves user/group |

application whitelist

FIG. 3

U.S. Patent

Oct. 11, 2016 Sheet 4 of 6

Method 400

US 9,465,955 B1

Public application whitelist manager is
started on a host

410

\ 4

Public application whitelist manager
starts the application access manager
driver

420

\ 4

Application access manager driver
registers a “create process” callback
function with OS kernel module

430
|/

\ 4

Public application whitelist manager
loads the public application whitelist

440

\ 4

Public application whitelist manager

automatically adds the applications

that are published to all users to the
public application whitelist

450

\ 4

Public application whitelist manager
sends the composite public application
whitelist to the application access
manager driver

460
|/

\ 4

Application access manager driver
stores the public application whitelist in
global data

470

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 5 of 6 US 9,465,955 B1

Method 500

\

510
User authenticates on a host. —

\ 4

User/group application whitelist 520

manager loads the user/group
application whitelist

\ 4
User/group application whitelist
manager automatically adds the 530

applications that are published to the
user or to groups of users to the
user/group application whitelist

A 4

User/group application whitelist 540
manager sends the composite |/
user/group application whitelist to
application access manager driver

\ 4

Application access manager driver | 550
stores the user/group application
whitelist in user’ s data

FIG. 5

U.S. Patent

Method 600

610

N

Parent process
attempts to launch a
program

!

620

Parent process calls
“create process”
function in OS kernel
module

!

630

OS kernel module
prepares process for
execution

!

640

OS kernel module
calls registered
“create process”
callback function in
application access
manager driver

Oct. 11, 2016

Program in
public
whitelist?

Program in
private
whitelist?

Sheet 6 of 6

650

Yes

US 9,465,955 B1

Application access
manager returns
failure to OS kernel
module

670

L

A 4

OS kernel module
terminates program

680
|

FIG. 6

A A 4

Application access
manager returns
success to OS kernel
module

690
|/

A 4

OS kernel module
executes program

695
|

US 9,465,955 Bl

1
SYSTEM FOR AND METHODS OF
CONTROLLING USER ACCESS TO
APPLICATIONS AND/OR PROGRAMS OF A
COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation and claims the
priority benefit of U.S. patent application Ser. No. 13/367,
228 filed Feb. 6, 2012, which claims the priority benefit of
U.S. provisional application No. 61/439,765 filed Feb. 4,
2011, the disclosures of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Technical Field

Various inventive embodiments disclosed herein relate
generally to computer security applications. In particular,
embodiments disclosed herein relate to a system for and
methods of controlling user access to applications and/or
programs of a computer.

2. Background

In a shared computing environment, multiple users are
accessing a common computer, such as a server, either
directly or remotely via a network connection. Often in a
shared computing environment most of the computer’s files,
programs, processes, and resources may be accessed or
browsed by the users. However, certain files, programs,
processes, and resources may be sensitive in nature and it
may be desired to restrict users’ access. Therefore, security
measures are implemented on shared computers that attempt
to provide isolation between users and thereby prevent one
user from accessing another user’s data and/or from per-
forming any unauthorized actions. Currently, computer
operating systems provide security features by which an
administrator of a shared computer may configure each user
(i.e., grant permissions or specify restrictions). However,
there may be a great deal of complexity associated with
using these security features. Therefore, the process of
configuring the security settings of multiple users may be
very difficult and time consuming.

BRIEF DESCRIPTION OF THE DRAWINGS

Various inventive embodiments disclosed herein, both as
to its organization and manner of operation, together with
further objectives and advantages, may be best understood
by reference to the following description, taken in connec-
tion with the accompanying drawings as set forth below:

FIG. 1 illustrates a block diagram of a computer that
includes security features for controlling user access to
applications and/or programs, according to the present dis-
closure;

FIG. 2 illustrates a flow diagram of a method of defining
public access to computer applications and/or programs,
according to the present disclosure;

FIG. 3 illustrates a flow diagram of a method of defining
user-specific and group-specific access to computer pro-
grams, according to the present disclosure;

FIG. 4 illustrates a flow diagram of a method of initial-
izing public access to computer programs, according to the
present disclosure;

FIG. 5 illustrates a flow diagram of a method of initial-
izing user-specific and group-specific access to computer
programs, according to the present disclosure; and

15

25

30

40

45

50

55

2

FIG. 6 illustrates a flow diagram of a method of enforcing
access restrictions to computer applications and/or pro-
grams, according to the present disclosure.

DETAILED DESCRIPTION

The disclosure provides a system with improved security
features for controlling user access to applications and/or
programs, and more particularly to limiting or restricting
user access to applications and/or programs of a computer.
The system of the invention exhibits numerous advantages
over existing systems. In various embodiments, the system
and associated methods may provide a simple process by
which an administrator may specify a list of allowable
applications and/or programs. Further, in some embodi-
ments, the system of the invention may be configured such
that a data structure of allowable applications and/or pro-
grams are more readily available to an operating system
kernel module. The system and methods of the invention
provide isolation between different users and sessions, such
that one user accessing a shared computer cannot access
other user’s data and/or perform any unauthorized actions.

FIG. 1 illustrates a block diagram of a computer 100 that
includes security features for controlling user access to
applications and/or programs, and more particularly to lim-
iting or restricting user access to applications and/or pro-
grams of computer 100. Computer 100 includes an operating
system (OS) 110 such as Windows® (Microsoft Corpora-
tion, Redmond, Wash., USA) or Linux. OS 110 segregates
virtual memory into a kernel-mode address space 120 (i.e.,
kernel space) and a user-mode address space 150 (i.e., user
space). In general terms, kernel space is reserved for running
an OS kernel, kernel extensions, and most device drivers. In
contrast, user space is the memory area in which user mode
applications operate.

Although not explicitly shown in FIG. 1, those skilled in
the art will recognize that computer 100 includes other
components, such as input/output devices (e.g., mouse,
keyboard, display, touch screen), primary and/or secondary
storage medium or memory, a central processing unit (CPU),
a communications bus, a network connection, and the like.
Additionally, computer 100 may be accessed by one or more
users/groups 190. In one example, computer 100 may be a
host computer or centralized server that users/groups 190
may access remotely via a network (not shown). In other
example, computer 100 may be a shared public computer
that is accessed directly by one or more users/groups 190. In
yet another example, computer 100 may be accessed either
directly or via a remote connection. In any case, users/
groups 190 may be granted access to computer 100 using a
login and authentication process.

An operating system (OS) kernel module 124 and an
application access manager driver 128 are loaded into ker-
nel-mode address space 120. In embodiments in which OS
110 of computer 100 is the Microsoft Windows OS, OS
kernel module 124 may be NTOSKRNL.EXE. Application
access manager driver 128 may be implemented in the form
of a kernel dynamic link library (DLL) or driver. OS kernel
module 124 communicates with application access manager
driver 128 using software calls referred to as callbacks, as
will be further described herein.

This disclosure may relate to application publishing. The
functionality of a server application shall be visible to and
accessible by a client via a network. For example, server
application may be a computer-aided design (CAD) appli-
cation, such as AutoCAD (Autodesk, Inc., San Rafael,
Calif., USA) or Cadence Virtuoso (Cadence Design Sys-

US 9,465,955 Bl

3

tems, San Jose, Calif.); a medical clinical workflow appli-
cation such as Symbia.net (Siemens AG, Munich, Ger-
many); an interactive mapping application such as Google
Earth (Google, Inc.) or a 3D game. The functionality of the
server application shall be visible to and accessible by the
client via a network. For example, the functionality of a
server application may be accessed from a client using a
process herein known as application publishing, which is
currently supported by products such as GraphOn GO-
Global, Microsoft Remote Desktop Services and Citrix
XenApp. Such application publishing may be performed in
accordance with teachings of commonly-owned U.S. Pat.
No. 5,831,609, filed Jun. 6, 1995, entitled “Method and
system for dynamic translation between different graphical
user interface systems,” which is incorporated by reference
as though fully set forth herein.

User-mode address space 150 includes any number of
application modules 154, a public application whitelist 158,
an public application whitelist manager 162, a user/group
application whitelist 170, and a user/group application
whitelist manager 174. User/group application whitelist 170
and public application whitelist 158 are maintained in any
data storage medium (not shown) of computer 100. The
communication path between application modules 154 and
OS kernel module 124 signifies that each application module
is capable of passing information (e.g., the path to an
application module) to OS kernel module 124 during opera-
tion. The communication paths from user/group application
whitelist 170 to user/group application whitelist manager
174 and from public application whitelist 158 to public
application whitelist manager 162 signify that both
whitelists can be read from storage and information therein
can be provided to application access manager driver 128
during operation.

When a process (parent process) running on computer 100
attempts to start another process (child process) while
executing code in an application module 154, a request is
sent to kernel address space 120, and more particularly to
OS kernel module 124. For example, on Windows comput-
ers, when a user double-clicks a Microsoft Word icon on the
desktop, the process running the Windows Desktop execut-
able module (i.e., EXPLORER.EXE) executes a number of
functions that eventually send a command to the OS kernel
module 124 to start a new process running the Microsoft
Word executable module (WINWORD.EXE). In this
example, the process running EXPLORER .EXE is the par-
ent process and the new process running WINWORD.EXE
is the child process. By way of useful background, Windows
Explorer is a Windows GUI shell that lets a user examine
hard drives, folders, and files of computer 100.

When application access manager driver 128 receives
notification of a request to run an application or process.
Application access manager driver 128 processes the request
and either allows the process to run or denies the request.
That is, as access to a certain application is requested,
application access manager driver 128 performs an applica-
tion filtering function according to the invention. In this way,
application access manager driver 128 is used to enforce
access restrictions on the applications of computer 100.

Public application whitelist 158 is a resource (e.g., a file
or files) for storing a list of applications that may be run by
all users/groups 190 on computer 100. Such a resource is
referred to in the art as a centralized whitelist. The contents
of public application whitelist 158 are set up by an admin-
istrator.

Public application whitelist manager 162 starts when
computer 100 boots up. Public application whitelist manager

20

25

40

45

50

65

4

162 is responsible for communicating public application
whitelist 158 to application access manager driver 128 to be
stored in global data 136 at application access manager
driver 128, which can be accessed from any process. Public
application whitelist manager 162 reads public application
whitelist 158 from storage, adds to the whitelist any appli-
cations that an administrator has published to all users/
groups 190, and then sends the whitelist to application
access manager driver 128. As such, the act of publishing an
application automatically grants all users/groups 190 rights
to that application. Public application whitelist manager 162
sends public application whitelist 158 to application access
manager driver 128 directly via a method that allows user-
mode modules to send messages to kernel mode modules
(drivers). On Windows computers this may be done using an
10 Control.

User/group application whitelist 170 is a resource (e.g., a
file or files) for storing a list of programs that are allowed to
run on computer 100 by a specific user or group 190.
User/group application whitelist 170 may include an asso-
ciation between programs and users or groups. It is further
expressly contemplated that user/group application whitelist
170 may instead be a blacklist; that is, a resource storing
only those programs that are not allowed to be run by each
user or group 190. The contents of user/group application
whitelist 170 are set up by an administrator. The adminis-
trator may make manual entries to user/group application
whitelist 170 and/or automatically enable a user access to
programs that an administrator has published to a user or
group (e.g., programs that are referenced by shortcuts
included in the user’s profile.

User/group application whitelist manager 174 may be the
program that manages initialization of the user’s environ-
ment. User/group application whitelist manager 174 loads
user/group application whitelist 170 from storage, adds to
the whitelist programs that are published to the user (or
groups to which the user belongs), and sends user/group
application whitelist 170 to application access manager
driver 128 to be stored in user data 132. Public application
whitelist 158 can be edited by public application whitelist
manager 162 or by the logon process at user/group appli-
cation whitelist manager 174. By contrast, the user/group
application whitelist 170 can only be edited by the logon
process at user/group application whitelist manager 174. For
the purposes of the invention, public application whitelist
manager 162 and user/group application whitelist manager
174 may be implemented as separate processes or as a single
process.

FIG. 2 illustrates a flow diagram of a method 200 of
defining public access to applications and/or programs of
computer 100, and more particularly of defining public
application whitelist 158. Method 200 may include, but is
not limited to, the following steps.

At step 210, an administrator (or other user with similar
rights) uses an input device (not shown) of computer 100 to
enter information regarding applications and/or programs
that are required for users/groups 190 to access computer
100 and run the programs that are published to the user. On
Windows computers, an example of one such program is
ctfmon.exe, a Windows program that manages keyboard
layouts.

At step 220, the administrator uses an input device (not
shown) of computer 100 to enter information regarding
applications and/or programs that may be invoked by all
users/groups 190 of computer 100. That is, in the process of
configuring computer 100, the administrator publishes a set
of applications to all users/groups 190. For example, an

US 9,465,955 Bl

5
administrator may publish Microsoft Word® by creating a
shortcut to Microsoft Word® in the Public\Desktop folder of
computer 100. The act of publishing an application to all
users/groups 190 automatically grants all users/groups 190
rights to that application, as described in step 450 of method
400 of FIG. 4.

Step 220 provides a benefit over conventional systems in
which there is no connection between the process of pub-
lishing applications to a user and restricting the user from
running applications that are not published. For example,
administrators can publish applications to users on Windows
computers using Group Policy Preferences and grant/deny
users access to applications using Group Policy. With these
methods, however, administrators must publish the applica-
tions and then separately perform manual steps to grant the
user the right to run the published applications and restrict
the user from running applications that are not published. In
step 220, administrators must only publish the applications;
the system then automatically grants the user access to the
published applications and denies the user access to all other
applications that are not in public application whitelist 158.

At step 230, the administrator saves the set of processes
defined at step 210 in the form of public application whitelist
158 to storage medium (not shown) of computer 100.
Optionally, the administrator may also save the list of
published applications defined at step 220 in public appli-
cation whitelist 158 to storage medium of computer 100, but
in order to avoid data duplication, published applications are
typically added to public application whitelist 158 at step
450 of method 400 of FIG. 4. In one example, public
application whitelist 158 is stored as an XML file in a default
system directory to which all users are granted read access
but only administrators are granted write access.

FIG. 3 illustrates a flow diagram of a method 300 of
defining user-specific and group-specific access to programs
of computer 100, and more particularly of defining user/
group application whitelist 170. Method 300 may include,
but is not limited to, the following steps.

At step 310, an administrator (or other user with similar
rights) uses an input device (not shown) of computer 100 to
enter information regarding the programs of computer 100
that specific users or groups are allowed to run. In one
example, the administrator generates a user-specific or
group-specific whitelist for each user or group 190. In
another example, the administrator generates one whitelist
in which each program entry includes a list of the users and
groups 190 that are allowed to access the program.

At step 320, which may be in addition to or in place of
step 310, the administrator publishes applications to specific
users or groups 190. For example, on a Windows computer,
an administrator may publish Microsoft Word® to a specific
group of users using Group Policy Preferences. Like step
220 of method 200 of FIG. 2, the act of publishing the
application automatically grants specific users 190 and/or
specific groups 190 rights to that application. As such, step
320 provides a benefit over conventional systems in which
there is no connection between the process of publishing
applications to a user or group and automatically granting
the user of group rights to run the applications. This process
is managed by user/group application whitelist manager 174
at step 530 of method 500 of FIG. 5. Again, current methods
use group policy to enforce process restrictions, in which an
administrator must publish the applications and then sepa-
rately perform manual steps to grant the user rights to certain
applications and/or to restrict the user from running appli-
cations.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one example, the administrator specifies an application
path and executable name for each allowable program. In
another example, a directory can be specified and all pro-
grams within the directory (and, if present, subdirectories of
the directory) can be considered allowable programs. In yet
another example, the administrator can specify that a hash
code be generated and used to identify each allowable
program. Hash codes may be derived using any conven-
tional or novel hashing process known to one of skill.

At step 330, the administrator saves the allowable pro-
cesses in the form of user/group application whitelist 170 to
storage medium (not shown) of computer 100. In one
example, each user/group application whitelist 170 is stored
in an XML file in a user-specific or group-specific directory.
Further, this file or directory can have read-only access
properties for users or groups 190. The properties are
enforced by OS 110 and prevent unauthorized modifications
of user allowable processes.

FIG. 4 illustrates a flow diagram of a method 400 of
initializing public access to programs of computer 100, and
more particularly of passing public application whitelist 158
to application access manager driver 128. Method 400 may
include, but is not limited to, the following steps.

At step 410, public application whitelist manager 162 is
started on computer 100. In one example, public application
whitelist manager 162 is started during the startup process of
OS 110. Note that startup typically occurs prior to user
authentication.

At step 420, public application whitelist manager 162
loads and initializes application access manager driver 128
if application access manager driver 128 is not already
running (e.g., if application access manager driver 128 is not
configured to load when OS 110 boots).

At step 430, application access manager driver 128 reg-
isters a “create process” callback function with OS kernel
module 124. This involves passing a reference to a function
of application access manager driver 128 to kernel module
124 that meets OS 110’s requirements for “create process”
callback functions. These requirements may include calling
convention and parameter requirements.

At step 440, public application whitelist manager 162
loads public application whitelist 158 from storage medium
(not shown) into primary memory (not shown) of computer
100.

At step 450, based on applications that are published in
step 220 of method 200 of FIG. 2, public application
whitelist manager 162 automatically adds the applications
that are published to all users to the contents of public
application whitelist 158. For example, on Windows com-
puters, the list of published applications may be obtained by
searching directories within the user’s user profile for short-
cuts to applications.

At step 460, public application whitelist manager 162
transmits the composite public application whitelist 158 to
application access manager driver 128. In so doing, the list
of public allowable programs crosses over from user-mode
address space 150 to kernel-mode address space 120.

At step 470, application access manager driver 128 stores
public application whitelist 158 in global data 136 of appli-
cation access manager driver 128.

The benefits of performing method 400 of FIG. 4 include
(1) bringing public application whitelist 158 into kernel
space, where it may be accessed with high efficiency during
user-specific program access enforcement methods and (2)
creating a communication path from OS kernel module 124

US 9,465,955 Bl

7

to application access manager driver 128 that can be used to
enforce the program restrictions defined in public applica-
tion whitelist 158.

FIG. 5 illustrates a flow diagram of a method 500 of
initializing user-specific and group-specific access to pro-
grams of computer 100, and more particularly of passing
user/group application whitelist 170 to application access
manager driver 128. Method 500 may include, but is not
limited to, the following steps.

At step 510, a certain user 190 is authenticated with
computer 100. This step may include a username and
password check or other type of conventional or novel
authentication known to one of skill. This step generally
assumes that the list of allowable users has been predeter-
mined for computer 100 and is accessible from storage.

At step 520, user/group application whitelist manager 174
reads into memory (not shown) of computer 100 the list of
allowable programs contained in user/group application
whitelist 170 that are associated with the authenticated user
190 and any groups of which the user belongs. The allow-
able programs may be read from a file into a data structure
that can be quickly searched, such as an array list.

At step 530, based on applications that are published in
step 310 of method 300 of FIG. 3, user/group application
whitelist manager 174 automatically adds any applications
that are published to the authenticated user 190 to the
contents of user/group application whitelist 170. This also
includes automatically adding applications that are pub-
lished to any groups of which the authenticated user 190 is
a member. For example, on Windows computers, the list of
published applications may be obtained by searching direc-
tories within the user’s user profile for shortcuts to applica-
tions.

At step 540, user/group application whitelist manager 174
transmits the composite user/group application whitelist
170, which contains the user-specific list of allowable pro-
grams, to application access manager driver 128. Thus, the
user/group list of allowable programs exists in kernel-mode
address space 120.

At step 550, application access manager driver 128 stores
user/group application access whitelist 170 in user data 132
of the authenticated user 190. User data 132 resides at
application access manager driver 128.

The benefits of initialization method 500 include bringing
user/group application whitelist 170 into kernel-mode
address space 120, where it can be accessed with high
efficiency during user-specific application access enforce-
ment methods.

FIG. 6 illustrates a flow diagram of a method 600 of
enforcing access restrictions to applications and/or programs
of computer 100. More particularly, method 600 is an
example of a method of controlling user access to applica-
tions and/or programs of a computer. Method 600 may
include, but is not limited to, the following steps.

At step 610, any process (parent process) executing
application modules 154 attempts to launch a program of
computer 100 and thereby create a child process. For
example, the child process may be executing a word pro-
cessing program such as Microsoft Word®, which is WIN-
WORD.EXE, and the parent process of Microsoft Word®
may be Windows Explorer, which is EXPLORER. EXE.

At step 620, parent process executing a specific applica-
tion module 154 calls a “create process” function of OS
kernel module 124. The “create process” function requests
that OS kernel module 124 create a process and execute a
specific application module 154.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

At step 630, OS kernel module 124 prepares the process
for execution. For example, OS kernel module 124 may set
up an address space for the process, load the file containing
the specific application module 154’s code into memory,
and/or set up a stack for the process.

At step 640, before starting the process, OS kernel module
124 calls application access manager driver 128’s “create
process” callback function, which was registered with OS
kernel module 124 at step 430 of method 400 of FIG. 4.

At decision step 650, application access manager driver
128 determines whether the invoked program is present in
public application whitelist 158. For example, application
access manager driver 128 interrogates the contents of
public application whitelist 158 for the requested program.
If the program is present, method 600 proceeds to step 690.
If the program is not present, method 600 proceeds to
decision step 660.

At decision step 660, application access manager driver
128 determines whether the invoked program is present in
user/group application whitelist 170. For example, applica-
tion access manager driver 128 interrogates the contents of
user/group application whitelist 170 for the requested pro-
gram. [f the program is present, method 600 proceeds to step
690. If the program is not present, method 600 proceeds to
step 670.

According to one embodiment, public application
whitelist 158 and user/group application whitelist 170 are
both stored in kernel space memory. Decision steps 650 and
660 may include iterating through entries in both whitelists
and, for each allowable process entry, checking as to
whether the application matches the entry. In embodiments
in which the list of allowable processes is stored in any one
of a plurality of formats (e.g., a file name, a directory name,
ahash), checking may include a format-specific step, such as
comparing file name strings, iterating through a directory
and comparing file name strings found therein, and/or cal-
culating a file hash. The iteration may return a Boolean true
if the allowable process is found, otherwise returning false.

At step 670, having determined that the invoked program
is not present in any whitelist, application access manager
driver 128 returns a failure indication to OS kernel module
124.

At step 680, OS kernel module 124 terminates the
invoked program, which may include unloading any execut-
able modules of application modules 154 that were prepared
at step 630.

At step 690, having determined that the invoked program
is in either the public application whitelist 158 or user/group
application whitelist 170, application access manager driver
128 returns a success indication to OS kernel module 124.

At step 695, OS kernel module 124 starts the program,
which may include starting an initial thread of the process
that was prepared at step 630.

What is claimed is:
1. A method for controlling user access to applications,
the method comprising:

setting up a kernel-mode address space in memory;

identifying that a user is authorized to access the
requested application when the user is a member of a
select group of users by a hardware processor executing
instructions out of the kernel-mode address space setup
in the memory;

receiving a list of required applications that the select
group of users are allowed to access from a file, the list
of required applications including information that
associates one or more users of the select group of users

US 9,465,955 Bl

9

with the required applications, and the file is stored in
a user-mode address space;

storing the information that associates the one or more
users of the select group of users with the required
applications in a data structure in the kernel-mode
address space accessible by a hardware processor when
executing program code of an operating system kernel,

publishing the required applications to the select group of
users by creating one or more shortcuts that identify the
required applications;
receiving a request to access an application of the required
applications from a computer operated by the user of
the select group of users over a network interface;

identifying that the user of the select group of users is
authorized to access the requested application when the
requested application is in the list of required applica-
tions, wherein the identifying that the user of the select
group of users is authorized to access the requested
application includes the hardware processor executing
the program code of the operating system kernel to
search the data structure stored in the kernel-mode
address space;

accessing the requested application according to a short-

cut of the one or more shortcuts, wherein the shortcut
of the one or more shortcuts identifies a folder where
the requested application resides, the requested appli-
cation is accessed by the hardware processor executing
the program code of the operating system kernel to
access an application module stored in the user-mode
address space, the user-mode address space is acces-
sible to the required applications, and the application
module includes program code that is associated with
the requested application; and

providing access to data associated with the requested

application to the computer operated by the authorized
user over the network interface.

2. The method of claim 1, further comprising:

receiving an input from a system administrator identitying

a new application to add to the list of required appli-
cations that the select group of users are allowed to
access;

creating a new shortcut that identifies a folder where the

new application resides;
receiving a request from another user of the select group
of users to access the new application from a computer
of the another user of the select group of users;

identifying that the another user of the select group of
users is authorized to access the requested application;
accessing the new application according to the new
shortcut; and

providing access to data associated with the new appli-

cation to the computer of the another user of the select
group of users.

3. The method of claim 2, wherein the creating of the new
shortcut allows all users of the select user group access to the
new application.

4. The method of claim 1, further comprising denying
access to an application that is not in the list of required
applications.

5. The method of claim 1, wherein the list of required
applications is stored in a group specific directory.

6. The method of claim 1, further comprising receiving
authentication information input by the user of the select
group of users from the computer associated with the user of
the select group of users before identifying that the user of
the select group of users is authorized to access the requested
application.

w

15

20

25

30

35

40

45

50

55

60

10

7. A non-transitory computer readable storage medium

having embodied thereon a program executable by a hard-
ware processor to perform a method for controlling user
access to applications, the method comprising:

setting up a kernel-mode address space in memory;

identifying that a user is authorized to access the
requested application when the user is a member of a
select group of users by a hardware processor executing
instructions out of the kernel-mode address space setup
in the memory;

receiving a list of required applications that the select
group of users are allowed to access from a file, the list
of required applications including information that
associates one or more users of the select group of users
with the required applications, and the file is stored in
a user-mode address space;

storing the information that associates the one or more
users of the select group of users with the required
applications in a data structure in the kernel-mode
address space accessible by the hardware processor
when executing program code of an operating system
kernel,

publishing the required applications to the select group of
users by creating one or more shortcuts that identify the
required applications;

receiving a request to access an application of the required
applications from a computer operated by the user of
the select group of users over a network interface;

identifying that the user of the select group of users is
authorized to access the requested application when the
requested application is in the list of required applica-
tions, wherein the identifying that the user of the select
group of users is authorized to access the requested
application includes the hardware processor executing
the program code of the operating system kernel to
search the data structure stored in the kernel-mode
address space;

accessing the requested application according to a short-
cut of the one or more shortcuts, wherein the shortcut
of the one or more shortcuts identifies a folder where
the requested application resides, the requested appli-
cation is accessed by the hardware processor executing
the program code of the operating system kernel to
access an application module stored in the user-mode
address space, the user-mode address space is acces-
sible to the required, and the application module
includes program code that is associated with the
requested application; and

providing access to data associated with the requested
application to the computer operated by the authorized
user over the network interface.

8. The non-transitory computer readable storage medium

of claim 7, the program further executable to:

receive an input from a system administrator identifying
a new application to add to the list of required appli-
cations that the select group of users are allowed to
access;

create a new shortcut of the one or more shortcuts that
identifies a folder where the new application resides;

receive a request from another user of the select group of
users to access the new application from a computer of
the another user of the select group of users;

identify that the another user of the select group of users
is authorized to access the requested application;

access the new application according to the new shortcut;
and

US 9,465,955 Bl

11

provide access to data associated with the new application
to the computer of the another user of the select group
of users.
9. The non-transitory computer readable storage medium
of claim 8, wherein the creating of the new shortcut allows
all users of the select user group access to the new appli-
cation.
10. The non-transitory computer readable storage medium
of claim 7, the program further executable to deny access to
an application that is not in the list of required applications.
11. The non-transitory computer readable storage medium
of claim 7, wherein the list of required applications is stored
in a group specific directory.
12. The non-transitory computer readable storage medium
of claim 7, the program further executable to receive authen-
tication information input by the user of the select group of
users from the computer associated with the user of the
select group of users before identifying that the user of the
select group of users is authorized to access the requested
application.
13. An apparatus for controlling user access to applica-
tions, the apparatus comprising:
a user-mode data store that stores a file that includes a list
of required applications that a select group of users are
allowed to access, the list of required applications
including information that associates one or more users
of the select group of users with the required applica-
tions, and the file is stored in a user-mode address
space;
a memory;
a hardware processor, wherein the hardware processor
executing instructions out of the memory:
sets up a kernel mode address space in the memory,
identifies a user as being authorized to access the
requested application when the user is a member of
the select group of users by the hardware processor
executing instructions out of the kernel mode
memory address space setup in the memory,

stores the information that associates the one or more
users of the select group of users with the required
applications in a data structure in the kernel-mode
address space accessible by the hardware processor
when executing program code of an operating sys-
tem kernel,

publishes the required applications to the select group
of users by creating one or more shortcuts that
identify the required applications; and

a network interface that receives a request to access an
application of the required applications from a com-
puter operated by a user of the select group of users,
wherein the hardware processor executing instructions
out of the memory:
identifies that the user of the select group of users is

authorized to access the requested application when
the requested application is in the list of required

10

15

20

25

30

35

40

45

50

12

applications, wherein the identifying that the user of
the select group of users is authorized to access the
requested application includes the hardware proces-
sor executing the program code of the operating
system kernel to search the data structure stored in
the kernel-mode address space,

accesses the requested application according to a short-
cut of the one or more shortcuts, the shortcut of the
one or more shortcuts identifies a folder where the
requested application resides, wherein the requested
application is accessed by the hardware processor
executing the program code of the operating system
kernel to access an application module stored in the
user-mode address space, and the application module
includes program code that is associated with the
requested application, the user-mode address space
is accessible to the required applications, and

provides access to data associated with the requested
application to the computer operated by the autho-
rized user, the data provided over the network inter-
face to the computer operated by the user.

14. The apparatus of claim 13, further comprising an input
device, wherein:

the input device receives an input from a system admin-

istrator identifying a new application to add to the list
of required applications that the select group of users
are allowed to access, and

the hardware processor executing instructions out of the

memory creates a new shortcut that identifies a folder
where the new application resides,

the network interface receives a request from another user

of the select group of users to access the new applica-

tion from a computer of the another user of the select

group of users, and the hardware processor executing

instructions out of the memory:

identifies that the another user of the select group of
users is authorized to access the requested applica-
tion,

accesses the new application according to the new
shortcut, and

provides access to data associated with the new appli-
cation to another computer operated by the another
user of the select group of users, the data associated
with the new application is provided over the net-
work interface to the another computer operated by
the another user of the select group of users.

15. The apparatus of claim 14, wherein the creating of the
new shortcut allows all users of the select user group access
to the new application.

16. The apparatus of claim 13, wherein access to an
application that is not in the list of required applications is
denied.

17. The apparatus of claim 13, wherein the list of required
applications is stored in a group specific directory.

#* #* #* #* #*

